Abstract

The ultrastructure of the vas deferens, testes, spermatogenesis and spermatozoa of Gyrocotyle urna and G. parvispinosa is described. The vas deferens is ciliated and syncytial. Within the testes primary spermatocytes arise from the primary spermatogonia by incomplete mitotic divisions; the primary spermatocytes undergo two meiotic divisions leading to spermatids. In early spermatids microtubules are formed at the cell periphery. Later the spermatozoal cytoplasm (the ‘middle-piece’) grows out and the two spermatozoal flagella with their typical 9 + ‘1’ axonemes are formed. During ciliogenesis the flagella are at an angle of about 60° to the axis of the middle-piece. The flagella are inserted into basal bodies terminating in striated rootlets. Subsequently, the nucleus and isolated mitochondria migrate into the central axis. The angle between the flagella and the axis decreases; the flagella are incorporated to form the spermatozoon. In mature spermatozoa no basal body or rootlet elements were found. The phylogeny of parasitic Platyhelminthes is discussed with respect to the evolution of spermatozoa. The reduction of the acrosinoid granules which are found in spermatozoa of free-living Platyhelminthes and the incorporation of the spermatozoal flagella into the sperm body constitute autapomorphies of the Neodermata (the parasitic Platyhelminthes). Included in the Cestoda because of several common derived characters, Amphilinidea and Gyrocotylidea are the only cestodes with spermatozoa containing mitochondria. Their absence in Cestoidea—all taxa with a six-hooked larva and other characteristics—is an autapomorphy of this group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call