Abstract

Wall development during primary spore formation, discharge, and germination of Entomophthorales is emphasized in ultrastructural studies of Conidiobolus, Entomophaga, Neozygites, and Erynia. In the fungi examined, spore and sporophore walls consist of a thick, electron-translucent inner layer and a thin, electron-dense outer layer. During spore formation, cytoplasm of the supporting sporophore cell migrates into the spore initial. As the former cell empties, a septum develops. Discharge is caused by inversion of the papillum, which lacks the electron-dense layer. Only in Erynia did the two spore wall layers separate upon impact. Intracytoplasmic organization of the primary spore is typical of the Zygomycotina; the morphology of organelles was characteristic of species, whereas nuclear ultrastructure was consistent within genera. Conidiobolus nuclei have a prominent nucleolus that lacks heterochromatin, in contrast with the other genera where large patches of heterochromatin were observed. Upon germination, no rupture of the spore outer layer was observed other than at points of germ tube emergence. The germ tube wall was continuous with the inner spore wall layer. The results are discussed in reference to Entomophthorales taxonomy and definition of the terms conidium and monosporous sporangiolum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call