Abstract

The lateralis medialis-suprageniculate nuclear (LM-Sg) complex of the cat's posterior thalamus receives a rather wide variety of inputs from diverse cortical and subcortical areas. Previous ultrastructural studies of this nucleus demonstrated the presence of four types of vesicle-containing profiles and characterized some of these as gamma-aminobutyric acid (GABA)-containing terminals (Norita and Katoh [1987] J. Comp. Neurol. 263:54-67; Norita and Katoh [1988] Prog. Brain Res. 75:109-118). The present study has extended these observations by examining the immunoreactivity (ir) of LM-Sg, with antibodies raised against aspartate (Asp), glutamate (Glu), GABA, the acetylcholine (ACh) marker, choline acetyltransferase (ChAT), and substance P (SP), by using light and electron microscopy. Neuronal somata immunopositive for the excitatory amino acids (EAAs) Asp and Glu, were of medium size. EAA-ir terminals also were of medium size and contained round synaptic vesicles; they made asymmetrical synaptic contacts with dendritic profiles. Neuronal somata immunopositive for GABA were small. GABA-positive terminals also were small and contained pleomorphic synaptic vesicles; they formed symmetrical synaptic contacts with dendritic profiles. No neurons immunolabeled for ChAT were found. Terminals immunopositive for ChAT were small and contained round synaptic vesicles; these made symmetrical synaptic contacts, asymmetrical synaptic contacts, or both, of the en passant type with dendritic profiles. SP-immunolabeled neuronal somata were not found. Immunolabeled terminals were small, contained round synaptic vesicles, and made asymmetrical synaptic contacts with dendritic profiles. ChAT-ir and SP-ir axon terminals were not expressed evenly within LM-Sg. This difference in distribution suggests that within the LM-Sg, there may be a difference in specific sensory processing functions which correlate with transmitter type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.