Abstract

Fixation and staining procedures were developed for the electron microscopic demonstration of glycosaminoglycans (GAGs) in human epidermis. En bloc staining with cuprolinic blue (CB), ruthenium red (RR) and tannic acid (TA) in the primary fixative were applied for the localization of the GAGs. Removal of the epidermal basal lamina and underlying dermis was a prerequisite for stain penetration. In CB-fixed specimens 50 nm long, rod-like granules were found attached to keratinocyte cell surfaces, while the RR- and TA-fixed specimens contained round granules (luminal diameter 10 and 30 nm, respectively). The stainability of the CB-positive granules in the presence of 0.3 mol/l MgCl2 indicated that they contained sulphated GAGs. Prefixation digestions of epidermal sheets with chondroitinase ABC. Streptomyces hyaluronidase, and heparitinase showed that the RR-positive granules also contained sulphated GAGs, mostly heparan sulphate. The granules visualized with TA on keratinocytes were susceptible to heparitinase treatment, but the abundance of TA-staining suggested that TA also stained structures other than heparan sulphate. The EM data was in accordance with the 35SO4 labelling experiments showing that heparan sulphate was the major sulphated GAG synthesized in epidermis, whereas chondroitin/dermatan sulphates comprised about one fifth of the total activity incorporated. The distributions of the CB-, RR- and TA-positive granules on cell surfaces were similar. The morphology of the proteoglycan granules was probably determined by the extent of the GAG-chain collapse following binding to each of the dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.