Abstract
Calcium was localized ultrastructurally with the use of the modified oxalate-pyroantimonate reaction in the CA1 region of rat hippocampal slices. Ten-minute ischemia (incubation with anoxic and glucose-free medium) followed by 30 min reoxygenation resulted in mitochondrial calcium sequestration and ultrastructural damage. The addition of the adenosine receptor antagonist, theophylline, worsened the ischemia-induced morphological changes and particularly exaggerated the Ca2+ loading in the postsynaptic dendrites. In contrast, adenosine protected against ischemia-induced changes. The results suggest that adenosine exerts its neuroprotective action largely by maintaining intracellular calcium-homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.