Abstract
Several studies have indicated that olfactory responses are impeded by amiloride. Therefore, it was of interest to see whether, and if so which, olfactory epithelial cellular compartments have amiloride-sensitive structures. Using ultrastructural methods that involved rapid freezing, freeze-substitution and low temperature embedding of olfactory epithelia, this study shows that, in the rat, this tissue is immunoreactive to antibodies against amiloride sensitive Na(+)-channels. However, microvilli of olfactory supporting cells, as opposed to receptor cilia, contained most of the immunoreactive sites. Apices from which the microvilli sprout and receptor cell dendritic knobs had much less if any of the amiloride-antibody binding sites. Using a direct ligand-binding cytochemical method, this study also confirms earlier ones that showed that olfactory receptor cell cilia have Na+, K(+)-ATPase. It is proposed that supporting cell microvilli and the receptor cilia themselves have mechanisms, different but likely complementary, that participate in regulating the salt concentration around the receptor cell cilia. In this way, both structures help to provide the ambient mucous environment for receptor cells to function properly. This regulation of the salt concentration of an ambient fluid environment is a function that the olfactory epithelium shares with cells of transporting epithelia, such as those of kidney.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.