Abstract
To elucidate the ultrastructural modifications of the gill epithelium during smoltification, gills of the Atlantic salmon (Salmo salar) were examined by electron microscopy at three stages of this process, which were defined as follows: "parrs" were freshwater fish that had not yet started their transformation; "freshwater smolts" were freshwater fish that were ready to enter seawater; and "seawater smolts" were smolts that had been transferred from fresh water and maintained for 4 days in seawater (35%). In the gill epithelium of parrs, there were two types of chloride cells. The large chloride cells contained deeply stained mitochondria and numerous apical, irregular, dense, membrane-bound bodies that formed 77% of the chloride cell population and were distinguished easily from small chloride cells that have distinctly paler mitochondria and no dense bodies in their apical cytoplasm. In freshwater smolts, the large chloride cells formed 95% of the chloride-cell population. In contrast to the small chloride cells that were not modified, they almost doubled in size. Their tubular system developed extensively to form a tight network with regular meshes significantly smaller than those observed in parr chloride cells. Forty percent of the large chloride cells were associated with a new type of cell, the accessory cell, to which they were bound by shallow apical junctions. Half of these accessory cells were not seen to be in contact with the external medium. In seawater smolts, 80% of the large chloride cells were associated with accessory cells. Most accessory cells reached the external medium and sent numerous cytoplasmic interdigitations within the apical portion of the adjacent chloride cells. As a result, a section through the apical portion of the chloride cells and their associated accessory cells revealed a mosaic of interlocked cell processes bound together by an extended, shallow apical junction. It was concluded that the Atlantic salmon develops in fresh water most of the ultrastructural modifications of the gill epithelium which in most euryhaline fish are triggered by exposure to seawater. The effective transfer into seawater would act only as a final stimulus to achieve some adequacy between the freshwater smolt and its new environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.