Abstract

Assembly and budding of retroviruses is believed to involve a complex interaction of envelope and capsid proteins at the host cell membrane. The nature of these interactions is, however, incompletely understood. Studies of the topography of the surface of HIV-1 have shown that the envelope glycoprotein projections (knobs) are arranged in a T = 7 levo rotational symmetry. Similarly, an icosahedral structure has been suggested for the p17 matrix of HIV-1. In an effort to investigate whether there is a structural interaction between these molecules, virions whose maturation was blocked by an inhibitor of HIV protease were studied using cytochemistry, morphometry, and 2D fast Fourier transform image enhancement. Analysis of the relationship between core morphology and the topographic distribution of envelope glycoprotein projections on HIV-1 provided structural evidence of an interaction between Env and Gag proteins. Furthermore, image enhancement revealed a periodic substructure in the Pr55gag plaque. Taken together, the data suggest an interaction between Pr55gag and the gp120-gp41 complex during assembly and budding of HIV-1. This interaction may, in part, contribute to determining the amount of Env glycoprotein that will be incorporated into a virion, and therefore play a role in the biology of HIV-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.