Abstract

Adrenal cortical mitochondria display an extensive capacity to adapt morphologically to the functional state of the adrenal cortical cell. In the present study, we have used transmission electron microscopy to analyze cortical tissues from 3 normal human adrenal glands (zona fasciculata and zona glomerulosa), and from 8 steroid-secreting adrenal cortical adenomas (3 cortisol-producing, 4 aldosterone-producing, and 1 progesterone-producing tumor), correlating both clinical and biochemical features with cellular ultrastructure. The morphology of mitochondria was related to the enzyme activity and steroid-biosynthetic capacity of each tumor. Cells from aldosterone-producing adenomas demonstrated a large number of elongated tubular mitochondria with characteristic bridging of inner membranes, producing a lamellar-type pattern. Cells from cortisol-producing adenomas showed large round mitochondria with vesicular or tubulovesicular inner membranes surrounded by a characteristic dilated smooth endoplasmic reticulum. A highly unusual progesterone-producing adenoma, in which a deficiency of 21 alpha-hydroxylase activity was demonstrated, showed a peculiar type of enlarged lamellar mitochondria with bright inner matrix and a reduced number of inner membranes. Therefore, the ultrastructural characteristics of adrenal cortical mitochondria appear to be potential markers for the differentiation of steroid-producing adenomas. These studies point to the possibility of a broader use of electron microscopy in the study of adrenal tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.