Abstract

Endogenous IgG molecules were revealed with high resolution EM over the glomerular wall in renal tissues sampled from short and longterm control and streptozotocin induced diabetic rats by applying the protein A-gold immunocytochemical approach. In tissues from control animals, IgG antigenic sites were revealed on the subendothelial side of the basement membrane, the epithelial side being only weakly labelled. In contrast, in longterm diabetic animals IgG antigenic sites were present throughout the entire thickness of the basement membrane, and in patches closely associated with the plasma membrane of the epithelial cells. Deposits of basement membrane-like material present in the mesangial area were also highly labelled for IgG. Numerous intensely labelled lysosome-like structures were present in the epithelial cells. Morphometrical evaluation of the distribution of the labelling over the basement membrane confirmed these observations. In control animals a peak of labelling was found at 30 nm from the endothelial cell region corresponding to the subendothelial side of the lamina densa. In longterm diabetic animals the labelling was more uniformly distributed throughout the entire thickness of the basement membrane. These data were correlated to biochemical determinations of proteinuria and IgG excretion in urine samples from the control and the diabetic animals. These results suggest that in normal conditions the lamina densa may represent the main barrier for the restriction of the passage of IgGs through the glomerular wall. Modifications at that level occur during diabetes leading to or participating in the loss of the selective permeability of the basement membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.