Abstract

We have tested the hypothesis that functional differences between synapses are associated with ultrastructure in cultured cortical neurons. Using Ca(2+) imaging, we measured NMDA receptor-mediated miniature synaptic calcium transients attributed to the spontaneous release of single transmitter quanta. After imaging, the identified neurons were processed for serial transmission electron microscopy. At sites of quantal NMDA receptor-dependent Ca(2+) transients, we confirmed the presence of excitatory synapses and measured spine size and synaptic contact area. Our results demonstrate that synapse size correlates positively with the amplitude of the NMDA receptor-mediated postsynaptic response, suggesting that larger synapses express a greater number of NMDA receptors. Therefore, regulation of quantal amplitude may involve processes that alter synapse size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.