Abstract

Pleistophora macrozoarcidis a microsporidian parasite infecting the muscle tissue of the ocean pout Macrozoarces americanus collected from the Gulf of Maine of the Atlantic Ocean, MA, USA, was morphologically described on the basis of ultrastructural features. Infection was detected as opaque white or rusty brown lesions scattered throughout the musculature of the fish mainly in the region anterior to anus. Transmission electron microscopy showed that in individual parasitized muscle cells, the infection progresses within parasite formed vesicles which are in direct contact with muscle cell elements. The earliest observed parasitic stages are the globular multinucleated proliferative cells or plasmodia limited by a highly tortuous plasmalemma with intervesicular finger-like digitations projecting into the parasite cytoplasm. These cells divided through the invagination of the plasmalemma and the amorphous coat producing daughter-cells. Fine electron-dense secretion is deposited on the plasmalemma that causes its thickening which is a sign of commencement of the sporogonic phase. This phase is carried out by cytokinesis of the sporonts and results in the formation of sporoblasts and finally spores. Mature spore has a thin electron-dense exospore, a thick electron-lucent endospore, and the plasma membrane which encloses the spore contents. A single nucleus is centrally located with the posterior region containing a posterior vacuole. The majority of spores have 7-13 coils in 1-2 rows, and a small group of spores had about 23 coils forming two rows. Events of polar filament extrusion for penetration of uninfected cells were studied. The polaroplast membranes were expanded and occupy most of the length of the spore. The coils are dislocated from the sides of the spore to throughout the entire sporoplasm. The polar filament everts and extrudes through the polar cap with a sufficient force to pierce adjacent sporophorous vesicle walls. After eversion, the polar filament is referred to as a polar tubule, as it forms a tube through which the sporoplasm travels. It pierces anything in its path and deposits the sporoplasm at a new location to begin another infective cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.