Abstract

Mitochondria undergo spontaneous transient elevations in matrix pH associated with drops in mitochondrial membrane potential. These mitopHlashes require a functional respiratory chain and the profusion protein optic atrophy 1, but their mechanistic basis is unclear. To gain insight on the origin of these dynamic events, we resolved the ultrastructure of flashing mitochondria by correlative light and electron microscopy. HeLa cells expressing the matrix-targeted pH probe mitoSypHer were screened for mitopHlashes and fixed immediately after the occurrence of a flashing event. The cells were then processed for imaging by serial block face scanning electron microscopy using a focused ion beam to generate ~1,200 slices of 10 nm thickness from a 28 μm × 15 μm cellular volume. Correlation of live/fixed fluorescence and electron microscopy images allowed the unambiguous identification of flashing and nonflashing mitochondria. Three-dimensional reconstruction and surface mapping revealed that each tomogram contained two flashing mitochondria of unequal sizes, one being much larger than the average mitochondrial volume. Flashing mitochondria were 10-fold larger than silent mitochondria but with a surface to volume ratio and a cristae volume similar to nonflashing mitochondria. Flashing mitochondria were connected by tubular structures, formed more membrane contact sites, and a constriction was observed at a junction between a flashing mitochondrion and a nonflashing mitochondrion. These data indicate that flashing mitochondria are structurally preserved and bioenergetically competent but form numerous membrane contact sites and are connected by tubular structures, consistent with our earlier suggestion that mitopHlashes might be triggered by the opening of fusion pores between contiguous mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.