Abstract

Inflammatory bowel disease (IBD) is a global, chronic intractable disease. The functions of drugs and food components have been evaluated in models of IBD induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Here, we used transmission (TEM) and osmium-maceration scanning (SEM) electron microscopy to evaluate the ultrastructure of colonic epithelial cells in rat models of IBD induced by TNBS. Histological evaluation revealed that the intestinal crypts in the most regions of the IBD-model colons were deformed and we classified them as having high cell migration rates (HMIG). The remaining regions in the intestinal crypts retained a relatively normal structure and we classified them as having low cell migration rates (LMIG). Osmium-maceration SEM revealed the mucosal fluid flowing in spaces without secretory granules in crypt goblet cells of both HMIG and LMIG regions, indicating the depletion of goblet cell mucin that is found in patients with IBD. The Golgi apparatus in absorptive cells was stacked and curled in both regions. Osmium-maceration SEM showed membrane network structures resembling endoplasmic reticulum that were large and expanded in absorptive cells with HMIG rather than with LMIG regions in IBD-model colons. These findings indicated that endoplasmic reticulum stress is associated with susceptibility to IBD and that the effects of various agents can be evaluated according to endoplasmic reticulum stress revealed by using electron microscopy in models of IBD induced by TNBS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.