Abstract

The serotonin neurotoxin, 5,6-dihydroxytryptamine (5,6-DHT), was injected into the body cavity of snails. Changes induced in the central nervous system (CNS) by the neurotoxin were studied by morphological, electrophysiological and biochemical techniques for up to 90 days following injection. The neurotoxin induced a variety of ultrastructural alterations during the early phase (1st to 6th days) following treatment. On day 6 after treatment, membranous structures first appeared in the synaptic-like areas and apparently migrated to cell bodies where they were detected by day 14. Their number increased with time. Neurotoxin-induced structural alterations were found in neuronal processes and cell bodies of the serotonergic metacerebral giant cells injected intracellularly with horseradish peroxidase and in serotonin immunoreactive axons. These findings suggest that the toxin-induced alterations are rather selective for the serotonin-containing neuronal elements. The neurotoxin decreased the concentration of 5-HT in and [ 3H]5-HT uptake into cerebral and pedal ganglia, with a maximum effect between the 3rd and 5th day following drug administration. 5-HT levels and 5-HT uptake returned to normal by 19–21 days after treatment. The concentration of dopamine and of [ 3H]DA uptake capacity were reduced between 3–5 days after injection of 5,6-DHT by 6–7 days following treatment. The transmission from identified serotonergic synapse to targets was reduced beyond day 5 after 5,6-DHT administration. By 15 days after treatment, synaptic transmission between the metacerebral giant cell (MGC) and buccal followers was blocked. Transmission recovered by day 21 after 5,6-DHT. Comparison of the time-course of functional and structural recovery indicates that while functional recovery takes place within 21 dyas after treatment, certain structural alterations, e.g. the membranous structures and dense particles, remain in the nerve fibres and cell bodies. These may serve as specific intracellular markers of the serotonin-containing neuronal elements long after functional recovery from the effect of 5,6-DHT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.