Abstract

Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call