Abstract

The dogfish shark rectal gland (SRG) is histologically complex, containing connective, nerve, and smooth muscle tissue and at least three types of epithelial cells: secretory tubule, central duct, and endothelial. This cellular heterogeneity precludes studies of the intact SRG from distinguishing direct tubular effects of mediators that modulate chloride secretion from their indirect effects on nonepithelial cells such as neurons. Primary SRG cultures express high levels of secretagogue-stimulated chloride secretion, suggesting that SRG cells retain a significant level of cytodifferentiation in vitro. However, because nontubular cells could contaminate these cultures, the question of whether secretagogues activate chloride secretion through direct or indirect effects on tubular epithelial cells remains unresolved. To address this issue, detailed ultrastructural and cytochemical analyses of SRG cultures were carried out to assess the level of cellular heterogeneity and the degree of cytodifferentiation expressed by SRG cells in vitro. The results demonstrate that, after 15 days, primary SRG monolayer cultures are composed exclusively of tubular epithelial cells with no detectable contamination by central duct cells, fibroblasts, smooth muscle cells, endothelial cells, or neurons. Tubular epithelial cells express most of the structural features of native SRG cells, including numerous mitochondria, massive basolateral surface amplification, complex tight junctions, and an extensive tubulovesicular system in the apical cytoplasm. Cultured SRG cells also display a striking level of polarization of cytoplasmic organelles and plasma membrane secretagogue receptors. These results account for the exceptionally high rates of electrogenic chloride secretion by SRG tubular epithelial cells in vitro and confirm that the effects of secretagogues on transport activity reflect their direct interaction with tubular epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call