Abstract

A novel microcavity structure based on 1-D parity-time (PT) symmetric photonic crystal (PC) is presented to get the embedded monolayer graphene absorption enhanced significantly, which paves a path to achieve ultrastrong, controllable, and anisotropic graphene absorption for incident eigenfrequency wave from near infrared to visible. When oscillation of absorption is at the center of the PT broken phase, because of exact matching usage of gain and loss modulation, and singular strong coupling effects that are induced by the PT symmetric PC behind graphene layer, ultrastrong and nonreciprocal graphene absorption can be obtained, and the maximum could reach the order of 10 5 . This approach offers a way to improve the responsivities of graphene-based optodetectors and even to the design of direction sensitive graphene optical communication components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.