Abstract

Quantum magnonics is a new and active research field, leveraging the strong collective coupling between microwaves and magnetically ordered spin systems. To date work in quantum magnonics has focused on transition metals and almost entirely on ferromagnetic resonances in yttrium iron garnet (YIG). Antiferromagnetic systems have gained interest as they produce no stray field, and are therefore robust to magnetic perturbations and have narrow, shape independent resonant linewidths. Here we show the first experimental evidence of ultrastrong-coupling between a microwave cavity and collective antiferromagnetic resonances (magnons) in a rare earth crystal. The combination of the unique optical and spin properties of the rare earths and collective antiferromagnetic order paves the way for novel quantum magnonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.