Abstract

Researchers have been aiming to replace copper with carbon nanotube/copper nanocomposites, which are lighter and exhibit better electrical, mechanical, and thermal properties. However, the strength is far below pure carbon nanotube assembly and even much lower than some copper-based alloys. This disadvantage hinders the extensive application of carbon nanotube/copper nanocomposites. In this study, the carbon nanotube/aluminum-copper nanocomposites with ultra-strength and stiffness were prepared. The strength and elasticity modulus of composite reached as high as 6.6 and 500 GPa, respectively, while a high conductivity of 1.8 × 107 S/m was maintained. This can be attributed to the diffusion of Cu and Al atoms into the carbon nanotube fiber, which enhances friction between the carbon nanotubes by "pinning" and "bridging". This structure provides us with novel insights into the design of carbon nanotubes/metal nanocomposites with ultrahigh strength and conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.