Abstract

Conductive hydrogels as promising candidates of wearable electronics have attracted considerable interest in health monitoring, multifunctional electronic skins, and human-machine interfaces. However, to simultaneously achieve excellent electrical properties, superior stretchability, and a low detection threshold of conductive hydrogels remains an extreme challenge. Herein, an ultrastretchable high-conductivity MXene-based organohydrogel (M-OH) is developed for human health monitoring and machine-learning-assisted object recognition, which is fabricated based on a Ti3C2Tx MXene/lithium salt (LS)/poly(acrylamide) (PAM)/poly(vinyl alcohol) (PVA) hydrogel through a facile immersion strategy in a glycerol/water binary solvent. The fabricated M-OH demonstrates remarkable stretchability (2000%) and high conductivity (4.5 S/m) due to the strong interaction between MXene and the dual-network PVA/PAM hydrogel matrix and the incorporation between MXene and LS, respectively. Meanwhile, M-OH as a wearable sensor enables human health monitoring with high sensitivity and a low detection limit (12 Pa). Furthermore, based on pressure mapping image recognition technology, an 8 × 8 pixelated M-OH-based sensing array can accurately identify different objects with a high accuracy of 97.54% under the assistance of a deep learning neural network (DNN). This work demonstrates excellent comprehensive performances of the ultrastretchable high-conductive M-OH in health monitoring and object recognition, which would further explore extensive potential application prospects in personal healthcare, human-machine interfaces, and artificial intelligence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call