Abstract
The development of ultrastable carbon materials for potassium storage poses key limitations caused by the huge volume variation and sluggish kinetics. Nitrogen‐enriched porous carbons have recently emerged as promising candidates for this application; however, rational control over nitrogen doping is needed to further suppress the long‐term capacity fading. Here we propose a strategy based on pyrolysis–etching of a pyridine‐coordinated polymer for deliberate manipulation of edge‐nitrogen doping and specific spatial distribution in amorphous high‐surface‐area carbons; the obtained material shows an edge‐nitrogen content of up to 9.34 at %, richer N distribution inside the material, and high surface area of 616 m2 g−1 under a cost‐effective low‐temperature carbonization. The optimized carbon delivers unprecedented K‐storage stability over 6000 cycles with negligible capacity decay (252 mA h g−1 after 4 months at 1 A g−1), rarely reported for potassium storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.