Abstract
Directional droplet manipulation is very crucial in microfluidics, intelligent liquid management, etc. However, excessive liquid pressure tends to destroy the solid-gas-liquid (SAL) composite interface, creating a highly adhesive surface, which is not conducive to liquid transport. Herein, we propose a strategy to enhance the surface durability, in which the surface cannot withstand liquid pressure only by "blocking" but must instead guide liquid transport for "decompression". Learning from the water resistance of water strider legs and the drag reduction of shark skin, we present a continuous integrated system to obtain an ultrastable super-hydrophobic surface with a highly ordered scaly structure via a liquid flow-induced alignment method for lossless unidirectional liquid transport. The nonwetting scaly structure can both buffer liquid pressure and drive droplet motion to further reduce the vertical pressure of the liquid. Moreover, droplets can be manipulated unidirectionally using a voice. This work could aid in manufacturing scalable anisotropic micro-nanostructure surfaces, which inspires efforts in realizing lossless continuous liquid control on demand and related microfluidic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.