Abstract

Perovskite light-emitting diodes (PeLEDs) have emerged as a strong contender for next-generation display and information technologies. However, similar to perovskite solar cells, the poor operational stability remains the main obstacle toward commercial applications. Here we demonstrate ultra-stable and efficient PeLEDs with extraordinary operational lifetimes (T50) of 1.0x10^4 h, 2.8x10^4 h, 5.4x10^5 h, and 1.9x10^6 h at initial radiance (or current densities) of 3.7 W/sr/m2 (~5 mA/cm2), 2.1 W/sr/m2 (~3.2 mA/cm2), 0.42 W/sr/m2 (~1.1 mA/cm2), and 0.21 W/sr/m2 (~0.7 mA/cm2) respectively, and external quantum efficiencies of up to 22.8%. Key to this breakthrough is the introduction of a dipolar molecular stabilizer, which serves two critical roles simultaneously. First, it prevents the detrimental transformation and decomposition of the alpha-phase FAPbI3 perovskite, by inhibiting the formation of lead and iodide intermediates. Secondly, hysteresis-free device operation and microscopic luminescence imaging experiments reveal substantially suppressed ion migration in the emissive perovskite. The record-long PeLED lifespans are encouraging, as they now satisfy the stability requirement for commercial organic LEDs (OLEDs). These results remove the critical concern that halide perovskite devices may be intrinsically unstable, paving the path toward industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.