Abstract

A laser system with a spectral linewidth less than 1 Hz for spectroscopy of the 1S0–3P0 clock transition in strontium atoms has been demonstrated. A semiconductor laser emitting at a wavelength of 698 nm was stabilised to an external high-finesse Fabry–Perot cavity with vibration and temperature compensation near the zero expansion point. After laser cooling to a temperature below 3 μK, 88Sr atoms were loaded into an optical lattice at a magic wavelength of 813 nm. The laser system was used to characterise the 88Sr clock transition by magnetically induced spectroscopy. The resonance spectral width was determined to be 130 ± 17 Hz, which corresponds to a quality factor of 3 × 1012.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.