Abstract

AbstractMetallic 1T MoS2 is highly desirable for catalyzing electrochemical hydrogen production from water owing to its high electrical conductivity. However, stable 1T MoS2 is difficult to be produced in large‐scale by either common chemical or physical approaches. Here, ultrastable in‐plane 1T–2H MoS2 heterostructures are achieved via a simple one‐pot annealing treatment of 2H MoS2 bulk under a mixture gas of Ar and phosphorous vapor, where phosphorus cannot only occupy the interspace of MoS2 bulk, resulting in the expansion of MoS2, but also embed into the lattice of MoS2, inducing the partial phase transition from 2H to 1T phases of MoS2. Benefiting from its significantly improved electrical conductivity, highly exposed active sites, and hydrophily property, in‐plane 1T–2H MoS2 heterostructures exhibit largely improved electrocatalytic properties for hydrogen evolution reaction (HER) in alkaline electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.