Abstract

Graphite with abundant reserves has attracted enormous research interest as an anode of potassium-ion batteries (PIBs) owing to its high plateau capacity of 279 mAh g-1 at ≈0.2V in conventional carbonate electrolytes. Unfortunately, it suffers from fast capacity decay during K+ storage. Herein, an ultrastable graphite-potassium anode is developed through binder chemistry. Polyvinyl alcohol (PVA) is utilized as a water-soluble binder to generate a uniform and robust KF-rich SEI film on the graphite surface, which can not only inhibit the electrolyte decomposition, but also withstand large volume expansion during K+ -insertion. Compared to the PVDF as binder, PVA-based graphite anode can operate for over 2000 cycles (running time of 406 days at C/3) with 97% capacity retention in KPF6 -based electrolytes. The initial Coulombic efficiency (ICE) of graphite anode is as high as 81.6% using PVA as the binder, higher than that of PVDF (40.1%). Benefiting from the strong adhesion ability of PVA, a graphite||fluorophosphate K-ion full battery is further built through 3D printing, which achieves a record-high areal energy of 8.9 mWh cm-2 at a total mass loading of 38mg cm-2 . These results demonstrate the important role of binder in developing high-performance PIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.