Abstract
Incorporating a functional unit into the multidimensional coordination polymer skeleton is an efficient way to improve the stability of materials and expand their application. In this paper, anionic copper iodide inorganic functional modules are incorporated into one-dimensional extended chains by using a unique bidentate cationic organic ligand. Benefiting from the ionic extended structure, the resulting hybrid possesses a remarkable stability with a decomposition temperature as high as 300 °C. Meanwhile, the hybrid material exhibits intrinsic greenish white-light emission with a high photoluminescent quantum yield of 70%. The emission was investigated by temperature-dependent emission spectra, which proved to be the result of the synergistic effect of two energy states. The novel synthetic strategy provides an efficient route for the development of functional organic metal halides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.