Abstract

Ca-ion batteries (CIBs) have been considered a promising candidate for the next-generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+ /Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)-typed Na-vacant Na1 V2 (PO4 )2 F3 (N1 PVF3 ) with sufficient interstitial spaces is reported as ultra-stable and high-energy Ca ion cathodes. The N1 PVF3 delivers exceptionally high Ca storage capacities of 110 and 65mAh g-1 at 10 and 500mA g-1 , respectively, and a record-long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1 PVFx (1≤x≤3), the high working potential of 3.5V versus Ca2+ /Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1 VPF3 cathodes are constructed, which deliver an initial energy density of 342W h kg-1 , representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high-power capabilities for N1 PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call