Abstract

It is supposed that inertial cavitation plays a significant role in tissue damage during extracorporeal shock wave lithotripsy (ESWL). In this work we attempted to detect cavitation in tissue. In vivo experiments with pigs were conducted in a Dornier HM3 electrohydraulic lithotripter. Kidney alignment was made using fluoroscopy and B-mode ultrasound. Cavitation was detected by a dual passive cavitation detection (DPCD) system consisting of two confocal spherical bowl PZT transducers (1.15 MHz, focal length 10 cm, radius 10 cm). An ultrasound scanhead was placed between the transducers, an hyperechoic spots in the image indicated pockets of bubbles during ESWL. A coincidence-detection algorithm and the confocal transducers made it possible to localize cavitation to within a 4 mm diameter region. The signals from both the collecting system and kidney tissue were recorded. The targeting of the DPCD focus was confirmed by using the DPCD transducers as high intensity focused ultrasound (HIFU) sources at HIFU durations below the lesion formation threshold. In this HIFU regime, a bright spot appears in the B-mode image indicating the position of the DPCD focus. In this way we could confirm that refraction and scattering in tissue did not cause a misalignment. The tissue region interrogated was also marked with a lesion produced by HIFU. Clear cavitation signals were detected from the collecting system and from pools of blood that formed near the kidney capsule and weak signals were recorded from tissue during the ESWL treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.