Abstract
The key objective of cell therapy after myocardial infarction (MI) is to effectively enhance the cell grafted rate, and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising cell source for cardiac repair after ischemic damage. However, a low grafted rate is a significant obstacle for effective cardiac tissue regeneration after transplantation. This protocol shows that multiple hiPSC-CM ultrasound-guided percutaneous injections into an MI area effectively increase cell transplantation rates. The study also describes the entire hiPSC-CM culture process, pretreatment, and ultrasound-guided percutaneous delivery methods. In addition, the use of human mitochondrial DNA help detect the absence of hiPSC-CMs in other mouse organs. Lastly, this paper describes the changes in cardiac function, angiogenesis, cell size, and apoptosis at the infarcted border zone in mice 4 weeks after cell delivery. It can be concluded that echocardiography-guided percutaneous injection of the left ventricular myocardium is a feasible, relatively invasive, satisfactory, repeatable, and effective cellular therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.