Abstract

BackgroundCervical lymph node metastasis (LNM) is an important prognostic factor for patients with non-small cell lung cancer (NSCLC). We aimed to develop and validate machine learning models that use ultrasound radiomic and descriptive semantic features to diagnose cervical LNM in patients with NSCLC.MethodsThis study included NSCLC patients who underwent neck ultrasound examination followed by cervical lymph node (LN) biopsy between January 2019 and January 2022 from three institutes. Radiomic features were extracted from the ultrasound images at the maximum cross-sectional areas of cervical LNs. Logistic regression (LR) and random forest (RF) models were developed. Model performance was assessed by the area under the curve (AUC) and accuracy, validated internally and externally by fivefold cross-validation and hold-out method, respectively.ResultsIn total, 313 patients with a median age of 64 years were included, and 276 (88.18%) had cervical LNM. Three descriptive semantic features, including long diameter, shape, and corticomedullary boundary, were selected by multivariate analysis. Out of the 474 identified radiomic features, 9 were determined to fit the LR model, while 15 fit the RF model. The average AUCs of the semantic and radiomics models were 0.876 (range: 0.781–0.961) and 0.883 (range: 0.798–0.966), respectively. However, the average AUC was higher for the semantic-radiomics combined LR model (0.901; range: 0.862–0.927). When the RF algorithm was applied, the average AUCs of the radiomics and semantic-radiomics combined models were improved to 0.908 (range: 0.837–0.966) and 0.922 (range: 0.872–0.982), respectively. The models tested by the hold-out method had similar results, with the semantic-radiomics combined RF model achieving the highest AUC value of 0.901 (95% CI, 0.886–0.968).ConclusionsThe ultrasound radiomic models showed potential for accurately diagnosing cervical LNM in patients with NSCLC when integrated with descriptive semantic features. The RF model outperformed the conventional LR model in diagnosing cervical LNM in NSCLC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.