Abstract

Cervical range of motion (ROM) is a part of the dynamic component of spine evaluation and can be used as an indication of dysfunction in anatomical structures as well as a diagnostic aid in patients with neck pain. Studies indicate that movement coordination of axial segments such as head in dynamic state, disrupted in pathologic conditions. In recent years, a number of non-invasive instruments with varying degrees of accuracy and repeatability have been utilized to measure active or passive range of motion in asymptomatic adults. The aim of this investigation is to design and implement a new method by evidence based approach for estimating the level of defect in segment stability and improvement after treatment by measuring quality or quantity of movement among cervical segment. Transmitter sensors which have been mounted on body send ultrasonic burst signal periodically and from the delay time it takes for this burst to reach three other sensors which arranged on a T-shape Mechanical base, three dimensional position of the transmitter can be calculated. After sending 3D coordination data to a PC via USB port, a complex and elaborative Visual Basic software calculate the angular dispersion and acceleration for each segment separately. This software also calculates the stabilization parameters such as anchoring index (AI) and cross-correlation function (CCF) between head and trunk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.