Abstract

BackgroundD-isoascorbic acid is a food antioxidant additive and used in accordance with Good Manufacturing Practice (GMP). High solubility in water (about 150 g/L at 25°C) reduces its effectiveness in stabilizing fats and oils. Our research group had successfully synthesized D-isoascorbyl palmitate using immobilized lipase Novozym 435 as a biocatalyst. Low production efficiency of D-isoascorbyl palmitate is still a problem for industrial production due to the long reaction time of over 24 h. In the present work, ultrasonic treatment was applied for accelerating the reaction process. The operation parameters were optimized to obtain the maximum D-isoascorbyl palmitate conversion rate by using a 5-level-4-factor Central Composite Design (CCD) and Response Surface Methdology (RSM). The reaction apparent kinetic parameters under the ultrasound treatment and mechanical shaking conditions were also determined and compared.ResultsResults showed that ultrasound treatment decreased the reaction time by over 50%. D-isoascorbyl palmitate yielded to 94.32 ± 0.17% and the productivity reached to 8.67 g L-1 h-1 under the optimized conditions as: 9% of enzyme load (w/w), 61°C of reaction temperature, 1:5 of D- isoascorbic-to-palmitic acid molar ratio, and 137 W of the ultrasound power. The immobilized lipase Novozym 435 could be reused for 7 times with 65% of the remained D-isoascorbyl palmitate conversion rate. The reaction kinetics showed that the maximum apparent reaction rate (vmax) of the ultrasound-assisted reaction was 2.85 times higher than that of the mechanical shaking, which proved that ultrasound treatment significantly enhanced the reaction efficiency.ConclusionA systematic study on ultrasound-assisted enzymatic esterification for D-isoascorbyl palmitate production is reported. The results show a promising perspective of the ultrasound technique to reduce the reaction time and improve the production efficiency. The commercial D-isoascorbyl palmitate synthesis will be potentially realized due to this ultrasound-promoted esters synthesis method.

Highlights

  • D-isoascorbic acid is a food antioxidant additive and used in accordance with Good Manufacturing Practice (GMP)

  • Food and Drug Administration (FDA) had classified it as generally recognized as safe (GRAS) additives [5]

  • In order to systemically find the relationships between reaction temperature, substrate molar ratio, enzyme load, and ultrasonic power for the synthesis of D-isoascorbyl palmitate, a 5-level-4-factor Central Composite Design (CCD) was applied with the 30 total experiments

Read more

Summary

Results

Results showed that ultrasound treatment decreased the reaction time by over 50%. D-isoascorbyl palmitate yielded to 94.32 ± 0.17% and the productivity reached to 8.67 g L-1 h-1 under the optimized conditions as: 9% of enzyme load (w/w), 61°C of reaction temperature, 1:5 of D- isoascorbic-to-palmitic acid molar ratio, and 137 W of the ultrasound power. The immobilized lipase Novozym 435 could be reused for 7 times with 65% of the remained D-isoascorbyl palmitate conversion rate. The reaction kinetics showed that the maximum apparent reaction rate (vmax) of the ultrasound-assisted reaction was 2.85 times higher than that of the mechanical shaking, which proved that ultrasound treatment significantly enhanced the reaction efficiency

Conclusion
Background
Results and discussion
II Average predicted
Conclusions
Karmee SK
Alan AF
Hui YH
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call