Abstract
Microcrystalline cellulose (MCC) was fibrillated using an ultrasound probe to produce a hydrogel, which after freeze-drying and carbonisation under N2 atmosphere at elevated temperatures produced highly porous carbon. Ultrasound treatment in the absence of acid resulted in high aspect ratio, nanocrystalline cellulose due to fibrillation of the outer layers of the MCC fibre bundles, whereas in the presence of acid, cleavage of glycosidic bonds resulted in smaller aspect ratio fibres. Carbonisation of the acid-generated nanocrystalline cellulose samples at 800 °C provided the highest BET surface area of 917.0 m2/g, with over 18% pore volume in mesopores. The resulting high surface area carbon was able to absorb 100% of methylene blue in a solution having an initial concentration of 10 mg/L in 20 min which is comparable with many commercially available activated carbon products. Ultrasonication of microcrystalline cellulose resulted in nanocrystalline cellulose hydrogel which after freeze drying and carbonisation provided high surface area mesoporous carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.