Abstract
This study investigated the effects of alkaline pH-shift processing (pH: 12, 12.5 and 13) combined with ultrasonication (300 W; 0, 10, 20, and 30 min) on the yield and functional characteristics of shrimp proteins. Ultrasound assistant pH-shift processing resulted in a significantly higher protein recovery than the alkaline pH-shifting as maximum protein recovery was obtained at pH 12.5 in combination with sonication for 30 min (25.12%). Applying ultrasonication during the alkaline solubilization remarkably (P < 0.05) decreased zeta potential and particle size of the recovered shrimp proteins while increasing their surface hydrophobicity, fluorescence intensity, and reactive sulfhydryl content. The combination led to the denaturation of the recovered proteins with a change in their α-helices, β-sheet, random coil and β-turn content. Foaming and emulsifying characteristics of the shrimp proteins were remarkably (P < 0.05) affected by using the combined treatment, however, the progress level was dependent on the ultrasonication time and the solubilization pH. The highest value in emulsifying activity and foaming capacity was obtained in the sample extracted at pH 12.5 in combination with ultrasound for 20 min (300 W). Altogether, applying ultrasonication during the pH-shift processing can help protein isolation from shrimp peeling by-products but the combination should be carefully tuned to achieve maximum protein functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.