Abstract

In order to obtain a highly efficient photocatalyst for water treatment, the sonochemical procedure applied to fabrication of excellent DyVO4 nanoparticles. A comparative study between two different synthesis routes (precipitation and sonochemical) was investigated in this work. Also, the influence of anionic, cationic and nonionic surfactant was studied on the formation of uniform particles. Further, the photocatalytic performance over the DyVO4 nanoparticles was studied under visible light by modifying the operational variables. Investigation of the photocatalytic mechanism process was conducted using hole scavengers for capturing reactive species. It was found that the DyVO4 nanoparticles sonochemically (a ultrasound probe with power of 60 W (18 KHz)) synthesized in presence of CTAB as an optimum condition, are uniform with average size of ~24 nm. The results showed that DyVO4 could remove near 88% of erythrosine, under the optimum condition of 0.05 g catalyst dosage and at initial pH 4. The DyVO4 maintained relatively high stability and reusability removal for erythrosine after five repeated cycles. The results could provide effective functional materials for elimination of chemical contaminants from wastewater through the photocatalytic process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call