Abstract

We have measured the ultrasound velocity and absorption in BeO, Al2O3, ZrO2, and SiO2 ceramics. The results indicate that the ultrasound velocity in oxide ceramics depends on the nature of the basic oxide component, the density of the material, and the preferential alignment of the grains. The ultrasound velocity in ceramics is shown to correlate with their thermal conductivity: with increasing thermal conductivity, the ultrasound velocity increases. The ultrasound absorption in oxide ceramics decreases with decreasing temperature, and vice versa, with increasing temperature, the ultrasound attenuation coefficient increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.