Abstract

Co-delivery of microbubbles (MBs) with anticancer drugs is a promising theranostic approach that can enhance both the ultrasound contrast and local extravasation of drugs with the sonoporation effect. The simultaneous administration of MBs and hydrophobic drugs, however, is still challenging due to the limitations in drug loading or undesirable stabilization of MBs. In this research, MB-self-aggregate complexes (MB-SAs) were newly fabricated for the encapsulation of hydrophobic drugs, and their theranostic properties are investigated in vitro and in vivo. Glycol chitosan self-aggregates (GC-SAs) loaded with hydrophobic drugs or dyes were chemically conjugated on the surface MBs. Their conjugation ratio was determined to be 73.9%, and GC-SAs on MBs did not affect the stability of MBs. GC-SA attached MBs (GC@MBs) were successfully visualized with low-intensity insonation and showed enhanced cellular uptake via the sonoporation effect. In vivo biodistribution of GC@MBs was examined with tumor-bearing mice, confirming that their accumulation at the tumor site increased by 1.85 times after ultrasound irradiation. The anticancer drug-loaded GC@MBs also exhibited 10% higher cytotoxicity under ultrasound flash. In conclusion, it was expected that GC@MBs could be used both as an ultrasound contrast agent and a drug carrier even with conventional ultrasonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.