Abstract

A multifunctional drug delivery vehicle, which combines the active targeted mesoporous silica nanoparticle (MSN) and microbubble (MB) drug delivery system, is proposed and fabricated. The resulting delivery vehicle integrates the merits of high drug loading capacity, multitargeting, and ultrasound-guided releasing. Folate (FA), which serves as an active ligand, is modified to the surface of MSN (MSN-FA) to enhance cell membrane translocation. MSN-FA is loaded with tanshinone IIA (TAN), then encapsulated in a microbubble (denoted as MSN-FA-TAN-MB) for more precise tumor targeting. The conjunction between FA and MSN is confirmed by fourier transform infrared spectroscopy (FTIR). The characteristics and morphology of MSN-FA-TAN-MB are investigated by confocal microscopy and transmission electron microscopy. In vitro cytotoxicity and cellular uptake studies of MSN-FA-TAN-MB are conducted on A549 and HeLa tumor cells. FA-facilitated MSN-FA-TAN uptake is shown by HeLa cells that overexpress FA receptors via a FA-receptor-mediated endocytosis mechanism. The ultrasound response property of MSN-FA-TAN-MB is also verified. MSN-FA-TAN-MB shows significant antitumor efficacy in vivo with the assistance of FA, MB, and an external ultrasound irradiation. Thus, this multifunctional vehicle may provide a novel strategy for tumor targeting and imaging in tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.