Abstract

AbstractMicrobubbles (MBs) exhibit cavitation upon exposure to ultrasound (US), which creates opportunities to adopt them in new therapeutic approaches. The present study reports an efficient, translatable approach to precisely control the spaciotemporal delivery of therapeutic microRNAs (AmiR‐21 and miR‐100) and TK‐p53‐NTR triple therapeutic gene, co‐loaded in PLGA‐PEG‐PEI polymer nanoparticles (NPs) to tumor models of triple negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) using US‐mediated targeted destruction of BR38 MBs. PLGA‐PEG‐PEI conjugated triblock co‐polymer NPs are synthesized and characterized for their physicochemical properties, and optimized for co‐loading of miRNAs and TK‐p53‐NTR. Quantitative in vivo imaging and ex vivo tissue analysis of 4T1 (TNBC) subcutaneous tumors in BALB/c mice reveal 19 ± 0.5% (p < 0.01) increase in delivery of miRNAs, and 48 ± 1.79% (p < 0.001) increase in delivery of TK‐p53‐NTR upon US treatment, which results to 48 ± 6.98% (p < 0.01) reduction in tumor growth as compared to contralateral tumors without US. This significantly increases the survival rate of animals as compared to pDNA control group. Similar treatment effects are observed in both TNBC and HCC tumor models. This novel combined therapeutic approach, entailing both miRNAs and suicide gene therapy has strong potential for future applications in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.