Abstract

Traditional chemotherapy generally results in systemic toxicity, which also limits drug levels at the area of need. Two ultrasound contrast agents (UCA), with diameters between 1–2 μm in diameter and shell thicknesses of 100–200 nm, composed of poly lactic-acid (PLA), one loaded by surface adsorption and the other loaded by drug incorporation in the shell, were compared in vitro for potential use in cancer therapy. These poly lactic-acid (PLA) UCA platforms contain a gas core that in an ultrasound (US) field can cause the UCA to oscillate or rupture. Following a systemic injection of drug loaded UCA with external application of US focused at the area of interest, this platform could potentially increase drug toxicity at the area of need, while protecting healthy tissue through microencapsulation of the drug. In vitro toxicity in MDA-MB-231 breast cancer cells of the surface-adsorbed and shell-incorporated doxorubicin (Dox) loaded UCA were examined at 5 MHz insonation using a pulse repetition frequency of 100 Hz at varying pressure amplitudes. Both platforms resulted in equivalent cell death compared to free Dox and US when insonated at peak positive pressure amplitudes of 1.26 MPa and above. While no significant changes in cell death were seen for surface adsorbed Dox-UCA with or without insonation, cell death using the platform with Dox incorporated within the shell increased from 16.12% to 25.78% ( p = 0.0272), approaching double the potency of the platform when insonated at peak positive pressure amplitudes of 1.26 MPa and above. This mechanism is believed to be the result of UCA rupture at higher insonation pressure amplitudes, resulting in more exposed drug and shell surface area as well as increased cellular uptake of Dox containing polymer shell fragments. This study has shown that a polymer UCA with drug housed within the shell may be used for US-triggered cell death. US activation can be used to make a carrier significantly more potent once in the area of need.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.