Abstract

An ultrasound synthetic aperture imaging method based on a monostatic approach was studied experimentally. The proposed synthetic aperture method offers good dynamical resolution along with fast numerical reconstruction. In this study complex object data were recorded coherently in a two-dimensional hologram using a 3.5 MHz single transducer with a fairly wide-angle beam. Image reconstruction which applies the wavefront backward propagation method and the near-field curvature compensation was performed numerically in a microcomputer using the spatial frequency domain. This approach allows an efficient use of the FFT-algorithms. Because of the simple and fast scanning scheme and the efficient reconstruction algorithms the method can be made real-time. The image quality of the proposed method was studied by evaluating the spatial and dynamical resolution in a waterbath and in a typical tissue-mimicking phantom. The lateral as well as the range resolution (-6 dB) were approximately 1 mm in the depth range of 30-100 mm. The dynamical resolution could be improved considerably when the beam width was made narrower. Although it resulted in a slightly reduced spatial resolution this compromise has to be done for better resolution of low-contrast targets such as cysts. The study showed that cysts as small as 2 mm by diameter could be resolved. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.