Abstract

The purpose of this study was to investigate the effects and underlying mechanisms of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation. BV-2 microglia subjected to LPS administration (1μg/mL) were treated with LIPUS stimulation. The levels of inflammatory mediators and brain-derived neurotrophic factor (BDNF) were quantified using the western blot. The results showed that LIPUS stimulation promoted the associated cAMP response element-binding protein (CREB)/BDNF expression in the LPS-treated microglia. Meanwhile, LIPUS treatment effectively suppressed the LPS-induced production of tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the microglial cells, in addition to inhibiting the LPS-induced expressions of toll-like receptor 4 and myeloid differentiation factor 88, as well as the LPS-induced activation of c-Jun N-terminal kinase and nuclear factor kappa B. Furthermore, LIPUS significantly decreased the Bax/Bcl-2 ratio in the microglia following LPS treatment. Our data indicated that LIPUS attenuated the proinflammatory responses as well as the decline in BDNF in LPS-treated microglia. This study provides a better understanding of how LIPUS stimulation regulates anti-inflammatory actions in microglia, providing further evidence suggesting that such stimulation may be regarded as a novel strategy for the treatment of neuroinflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call