Abstract

Cancer therapies result in the killing of cancer cells but remain largely ineffective, with most patients dying of their disease. The methodology described here is a new image-guided cancer treatment under development that relies on physical methods to alter tumour biology. It enhances tumour responses to radiation significantly by synergistically destroying tumour blood vessels using microbubbles. It achieves tumour specificity by confining the ultrasonic fields that stimulate microbubbles to tumour location only. By perturbing tumour vasculature and activating specific genetic pathways in endothelial cells, the technique has been demonstrated to sensitise the targeted tissues to subsequent therapeutic application of radiation, resulting in significantly enhanced cell killing through a ceramide-dependent pathway initiated at the cell membrane. The treatment reviewed here destroys blood vessels, significantly enhancing the anti-vascular effect of radiation and improving tumour cure. The significant enhancement of localised tumour cell kill observed with this method means that radiation-based treatments can be potentially made more potent and lower doses of radiation utilised. The technique has the potential to have a profound impact on the practice of radiation oncology by offering a novel and safe means of reducing normal tissue toxicity while at the same time significantly increasing treatment effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.