Abstract
The incidence of hepatocellular carcinoma (HCC) is continuously increasing, and the mortality rate remains high. Thus, more effective strategies are needed to improve the treatment of HCC. In this study, we report the use of a visualized glypican-3 (GPC3)-targeting nanodelivery system (named GC-NBs) in combination with sonodynamic therapy (SDT) to enhance the therapeutic efficacy for treating HCC. The obtained nanodelivery system could actively target hepatocellular carcinoma cells and achieve ultrasound imaging through phase changes into nanobubbles under low-intensity ultrasound irradiation. Meanwhile, the released chlorine e6 (Ce6) after the nanobubbles collapse could lead to the generation of reactive oxygen species (ROS) under ultrasound irradiation to induce SDT. Both in vitro and in vivo experiments have shown that GC-NBs can accumulate in tumour areas and achieve sonodynamic antitumour therapy under the navigation action of glypican-3-antibody (GPC3-Ab). Furthermore, in vitro and in vivo experiments did not show significant biological toxicity of the nanodelivery system. Moreover, GC-NBs can be imaged with ultrasound, providing personalized treatment monitoring. GC-NBs enable a visualized antitumour strategy from a targeted sonodynamic perspective by combining tumour-specific targeting and stimuli-responsive controlled release into a single system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.