Abstract

Nerve guidance conduits (NGCs) have been considered as promising treatment strategy and frontier trend for peripheral nerve regeneration; while their therapeutic outcomes are limited by the lack of controllable drug delivery and available physicochemical cues. Herein, we propose novel aligned piezoelectric nanofibers derived hydrogel NGCs with ultrasound (US)-triggered electrical stimulation (ES) and controllable drug release for repairing peripheral nerve injury. The inner layer of the NGCs was the barium titanate piezoelectric nanoparticles (BTNPs)-doped polyvinylidene fluoride-trifluoroethylene [BTNPs/P(VDF-TrFE)] electrospinning nanofibers with improved piezoelectricity and aligned orientation. The outer side of the NGCs was the thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) hybrid hydrogel with bioactive drug encapsulation. Such NGCs could not only induce neuronal oriented extension and promote neurite outgrowth with US-triggered wireless ES, but also realize the controllable nerve growth factor (NGF) release with the hydrogel shrinkage under US-triggered heating. Thus, the NGC could positively accelerate the functional recovery and nerve axonal regeneration of rat models with long sciatic nerve defects. We believe that the proposed US-responsive aligned piezoelectric nanofibers derived hydrogel NGCs will find important applications in clinic neural tissue engineering. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call