Abstract

BRAF-V600E mutation is regarded as the source of lung cancer resistance to trametinib (Tr), and no solution available for completely addressing this intractable resistance has emerged yet. Herein, the combination of ultrasonic (US) propelled folic acid (FA)-modified liposomes strategy and BRAF-driven gene silencing program is proposed to effectively reverse Tr's resistance to lung cancer. Meanwhile, the prepared cationic nanoliposomes can assist Tr drug and BRAF siRNA to escape lysosome disposal, thereby avoiding Tr drug pumping out or siRNA degradation. More significantly, loaded BRAF siRNA is designed to silence BRAF-V600E mutation genes via modulating BRAF-ERK-pathway and remarkably reverse the PC9R resistance to Tr. Systematic experiments validate that these cooperatively sensitize PC9R cells to Tr and shrink resistant NSCLC in vivo, especially after combining with FA-mediated targeting and US-enhanced permeability that permits more intratumoral accumulations of Tr. Such a biocompatible targeting drug-resistance liberation agent and its underlying design strategy lay a foundation avenue to completely reverse tumor resistance, which is preferable to treat BRAF mutation-arised resistance of various tumors, holding high clinical translation potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call