Abstract

Experimental studies on composite materials highlighted the existence of gas bubbles (voids) at different scales (micro and macro). These voids, resulting from the fabrication process, are sources of weakness for the end-user material. Therefore, several studies focus on the evaluation and the minimization of void rate. During injection of resin into the fibrous matrix, bubbles appear. Some are dispersed while others persist and diminish the overall quality of the finished product. This study consists in detecting bubbles during the resin transfer molding (RTM) process using an original method based on ultrasound. However, in practice we have to face with several problems due to the heterogeneity of the environment, such as the differentiation of a bubble from a strand or fiber. Due to the complexity of the problem, an experimental setup was built in order to detect bubbles using an ultrasonic phased array transducer in a flow of viscous fluid only, without the presence of fiber matrix. The study deals with the flow of a model fluid, which simulates the injected resin, with presence of air bubbles trapped in a channel production. Since the ultrasonic characteristics of the experimental setup are well known and characterized, the number, velocity and size of air bubbles could be evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.