Abstract

Ultrasound modulated fluorescence tomography (USMFT) has the potential to be a useful technique to obtain fluorescence images with optical contrast and ultrasound (US) resolution in deep tissue. However, due to the intrinsic incoherent properties of fluorescence and the low modulation depth, the signal-to-noise ratio (SNR) and image contrast are poor. In this paper, the feasibility of using pyrene-labelled nanosize liposomes as contrast agents to improve the modulation depth in USMFT is investigated by using a light-scattering technique. Compared with microbubbles (MBs), which have been applied to USMFT to improve the modulation depth, liposomes are more stable and they can be manufactured with good repeatability. Also liposomes have a lower US scattering coefficient due to their liquid core as compared to the gas core of MBs, which can be advantageous when switching on fluorescence in a region of interest is required. Pyrene can form excimer fluorescence when in close proximity to other pyrene molecules. The exposure of these liposomes to US can change the collision rate of the pyrene molecules and hence modulate the optical emission. In the current work, 100 nm sized liposomes composed of varying concentrations of pyrene-labelled phospholipids were investigated to identify a suitable liposome-based US contrast agent candidate. The fluorescence emission of the pyrene-labelled liposomes insonified by continuous US were studied. It has been observed that the excimer emission from 0.5 mol% pyrene-labelled liposome is US sensitive at pressures between 1.4 MPa and 2.7 MPa. Possible fluorescence modulation mechanisms and application of pyrene-labelled liposomes for high-resolution, high-contrast fluorescence imaging are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.